Human action recognition based on kinematic similarity in real time
نویسندگان
چکیده
Human action recognition using 3D pose data has gained a growing interest in the field of computer robotic interfaces and pattern recognition since the availability of hardware to capture human pose. In this paper, we propose a fast, simple, and powerful method of human action recognition based on human kinematic similarity. The key to this method is that the action descriptor consists of joints position, angular velocity and angular acceleration, which can meet the different individual sizes and eliminate the complex normalization. The angular parameters of joints within a short sliding time window (approximately 5 frames) around the current frame are used to express each pose frame of human action sequence. Moreover, three modified KNN (k-nearest-neighbors algorithm) classifiers are employed in our method: one for achieving the confidence of every frame in the training step, one for estimating the frame label of each descriptor, and one for classifying actions. Additional estimating of the frame's time label makes it possible to address single input frames. This approach can be used on difficult, unsegmented sequences. The proposed method is efficient and can be run in real time. The research shows that many public datasets are irregularly segmented, and a simple method is provided to regularize the datasets. The approach is tested on some challenging datasets such as MSR-Action3D, MSRDailyActivity3D, and UTD-MHAD. The results indicate our method achieves a higher accuracy.
منابع مشابه
Action Change Detection in Video Based on HOG
Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...
متن کاملA Real Time Traffic Sign Detection and Recognition Algorithm based on Super Fuzzy Set
Advanced Driver Assistance Systems (ADAS) benefit from current infrastructure to discern environmental information. Traffic signs are global guidelines which inform drivers from near characteristics of paths ahead. Traffic Sign Recognition (TSR) system is an ADAS that recognize traffic signs in images captured from road and show information as an adviser or transmit them to other ADASs. In this...
متن کاملReal Time Implementation of a License Plate Location Recognition System Based on Adaptive Morphology
License plate recognition (LPR) by using morphology has the advantage of resistance to brightness changes; high speed processing, and low complexity. However these approaches are sensitive to the distance of the plate from the camera and imaging angle. Various assumptions reported in other works might be unrealistic and cause major problems in practical experiences. In this paper we considered ...
متن کاملExemplar-Based Human Action Recognition with Template Matching from a Stream of Motion Capture
Recent works on human action recognition have focused on representing and classifying articulated body motion. These methods require a detailed knowledge of the action composition both in the spatial and temporal domains, which is a difficult task, most notably under real-time conditions. As such, there has been a recent shift towards the exemplar paradigm as an efficient low-level and invarian...
متن کاملReal-Time Kinematic Network of Tehran, from Design to Application
Following the request of the Tehran municipality and in order to provide the spatial information required in their various projects, a real-time kinematic network has been designed for Tehran. Based on the existing measures such as the dilution of precision at the network point positions, two different designs have been proposed. A minimum number of six GNSS stations are used in both of the pro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 12 شماره
صفحات -
تاریخ انتشار 2017